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A S Y M P T O T I C S  OF  F A L L I N G - D O W N  S O L I T A R Y  W A V E S  

B. V. P r i khod 'ko  UDC 532.51 

At small Weber numbers and at Reynolds numbers close to the critical value, the shape of the free 
surface of a viscous layer falling down an inclined plane is known to be approximated by a Korteweg-de 
Vries-type equation with a solution in the form of a solitary wave [1-6]. 

In the present paper, an appropriate asymptotic solution of the complete set of Navier-Stokes equations 
and boundary conditions is constructed. An analysis of the leading expansion terms reveals the asymmetry of 
the solution, which imposes an additional solvability condition associated with group invariance of the problem. 
This condition is satisfied identically with respect to the group parameter by virtue of the dependence of the 
Reynolds number of the basic flow on the parameters of the corresponding solitary wave. The dependence 
shows that the branching is locally directed toward the subcritical region for a plane-parallel flow. 

1. F o r m u l a t i o n  o f  t h e  P r o b l e m  in M i s e s - T y p e  Var iables .  We consider a steady-state flow of a 
layer of an incompressible viscous liquid in a plane at an angle a with the horizontal. The coordinate system 
moves parallel to the bot tom with wave velocity c. The coordinate origin is chosen at the unperturbed free 
boundary. The x and y axes are directed upstream and downstream, respectively. The flow bounded by a 
rigid bottom (y = 1) and a free surface [y = h(x)] obeys the Navier-Stokes equations. With allowance for the 
Nusselt ratio Re Frsin a = 3 for a plane-parallel flow [2], these equations take the form 

Re (r162 - CxCyy) = - 3  + / k e y  - Repz; (1.1) 

Re ( - r  + CxCxy) = 3cotan ~ -/X.r - Repy, (1.2) 

where r  is the stream function, Re = Q / v  is the Reynolds number, Fr = g H 3 / Q  2 is the Froude number, 
H is the unperturbed layer depth, and Q is the flow rate in the fixed coordinate system. At the free boundary 
and at the bottom, two dynamic and three kinematic conditions 

4h' 
~l, yy - Cxz 1 - h '2r = 0, y = h(x); (1.3) 

21 + h '2 . We h" 
- R e p  - 1 _---i-~0xy + ~ (1 + h'2)3/2' y = h(x); (1.4) 

r  h(x))  = 0, r  1) = c - 1, r  1) = c (1.5) 

are satisfied. Here We = Re a H / Q 2  is the Weber number and a is the surface-tension coefficient. 
We have to find a solitary-type solution of problem (1.1)-(1.5) that becomes a plane-parallel flow at 

infinity with the stream function 

1 3 3 2 
k9(7/) = ~r/ + 5~T/, ~ = 5 c -  1, (1.6) 

where 77 is the Lagrangian coordinate which coincides with the Eulerian coordinate y at infinity. According to 
[1], we choose, in problem (1.1)-(1.5), the Lagrangian coordinate 77 related to the stream function by formula 
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(1.6) as an independent transverse coordinate, and, as a dependent one, we choose the function w(x, q) related 
to the Eulerian coordinate y by the formula 

" [ 
y(x, rT) - -  1 + f e x p  - k ],J dt 

1 

and subject to the conditions 

=71 

= = o .  

+ 

(1.7) 

In the case considered, the dimensionless wave velocity c ~ 3, and q'(r/), therefore, is different from zero on 
the section [0, 1]. 

Conditions (1.5) now are satisfied identically. Omitting the pressure in the Navier-Stokes equations 
leads to the following integro-differential equation in the 0 < r /<  1 domain: 

w - 3 + 9  ~-7 -2~I, ~-~ w,vm = 3 e x p  --3 ~-7 

+ { - 3 c o t a n a y z +  [2~' l+y2(y_~)  _ W e  y== ] },7=oy 3 
y,/ 1 - y 2  n 3 (1+y2)3/2 = 

Y/ 

0 

z,Ty~y = - yn z - + =y,Ty = 
Y~ Y~ nJ 

(1.8) 

The problem is closed by the boundary condition (1.3) which takes the following form in new variables: 

2 3 2[(Y~) 3+Y__~2Yz(Y_.L)], q = 0 .  (1.9) 
w o , - ~ w = - ~ A y ,  z + l  yz 2 y,  y~ ~z 

Problem (1.7)-(1.9) has the following advantage: under the assumption of smallness of the Re number 
and the cotangent of the slope angle, its linear part is a problem with constant coefficients. The latter was 
studied by the author in [7], where the necessary and sufficient conditions for its solvability were found, the 
Green function was constructed, and the corresponding estimates were given. 

2. C o n s t r u c t i o n  of  an A s y m p t o t i c  Solut ion.  In problem (1.7)-(1.9), we extend the longitudinal 
variable ~ = ex and represent its solution as a series 

oo 

w(~,r/) = ~2 ~ wk(~,r/)ck. (2.1) 
k = 0  

In addition, according to [1], we set 

2/A = 2 -  ~2, (2.2) 

under the assumption that the spectral parameter 2/A is close to the eigenvalue of the linear problem. Equality 
(2.2) relates the wave velocity to the length scale ~ as follows: 

362 3 + 3~2 + O(~4). 
c =  (l+A)=3+4_2e------- ~ -  

The Reynolds number is regarded as a desired function of the problem parameters and we find it as a 
series Re = R0 + E R] + r 2 R2 + . . . .  The Weber number is assumed to be a free parameter of the order of 
unity. 
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As a result, we obtain, from problem (1.7)-(1.9), the recurrent sequence of boundary-value problems 
of the form 

wk,vvv =fk(wO, . . . ,wk-1) ,  0 < ? <  1, 
(2.3) 

wk,v,7 - 2wk = ~2k(w0,...,wk-1), 77 = 0, wk = wk,v = O, ? = 1, 

where fk and ~k are the known nonlinear operators. Satisfaction of the condition 

1 

~ok(w0,..., wk-1) + J fk(w0, . . . ,  wk-, )(1 - ?2) dr /=  0 (2.4) 
0 

is the necessary and sufficient condition for solvability of problem (2.3). When it is satisfied, the general 
solution of problem (2.3) can be written as 

v) = ak( , v) + ck( )v0(v), (2.5) 

where v0(?) = (3/2)(1 - ?)2 is the solution of the homogeneous problem (2.3); Ck(() is an arbitrary function 
and flk(~, ?) is the particular solution of problem (2.3) subject to the condition flk(~, 0) = 0. 

Ter-Krikorov [1] found the following formula for the first-order terms of expansion (2.1): 

= = + 

[ gcosn 3 , _ 2 (  4' cotan ] C0(~) -~-- ~31(?) = 16----'----~OO (? 5 -- 2? 3 + ?) o 

The solvability condition (2.4) of a nonhomogeneous problem for definition of w~ (~, ?) is satisfied by choosing 
R0 = (5/6)cotan a. This corresponds to a critical value of Re at which the plane-parallel flow becomes unstable 
[2, 3]. The function C0(~) is found, up to the translation, from the solvability condition (2.4) of the problem 
for determination of w2(~, ?), which is of the form of the Korteweg-de Vries stationary equation 

4C~' + 4C0 ~ - Co = 0, (2.6) 

if one sets R1 = 0. 
In finding the subsequent terms of the series (2.1), the arbitrary functions Ctc(~) (k = 1 ,2 , . . . )  entering 

(2.5) are determined from the solvability condition (2.4) of the boundary-value problem for the (k + 2)th term 
of the expansion being the C0(()-linearized equation (2.6): 

4C~ + (8C0 - 1)Ok = Fk(Co,..., C/c-l), k = 1,2, . . . .  (2.7) 

With allowance for the equation for C0(~) , . . . ,Ck- l (~)  and their differential consequences, the operator 
Fk(Co,..., Ck-1) is represented as a polynomial in its own arguments and their first derivatives. Thus, under 
the condition of an exponential decrease in the functions C0(~) , . . . ,  Ck-l(~), the right-hand side of Eq. (2'.7) 
decreases exponentially as well. In this case, the orthogonality condition 

+ ~  

] Fk(Co,..., Ck_,)C~(~) d~ = 0 (2.8) 

is necessary and sufficient for the existence of an exponentially decreasing solution of Eq. (2.7). The solution 
of Eq. (2.7) is written in the form 

Ck(~) = gEL(Co,.. . ,  Ck-1) + ukC~o(~), (2.9) 
+oo 

g F  = VI(~) f Vo(~')f(~')d~' + V0(~) f VI(~')F(~')d~', 
o 

where V0(~) = -V~(~)[V~(~')-2d~ ' and V~(~) = -(64/3)C~(~) are the even and odd solutions of the 

homogeneous equation (2.7). Note that the operator K conserves the evenness or oddness with respect to ~. 
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The arbitrary constants vk in (2.9) describe the translation of the coordinate system along the ~ axis by the 
quantity ck uk. 

An important circumstance in constructing the series of perturbations is the possibility of satisfying 
conditions (2.8) for k = 1,2, . . . .  In the case of symmetric solitons, for example, solitary waves in an ideal 
fluid [8], the orthogonality conditions turn out to be satisfied on a space of even functions automatically. 
For asymmetric solutions of variational problems, conditions (2.8) are fulfilled identically with respect to 
all parameters as a consequence of certain conservation laws [9]. In the general nonconservative case, these 
conditions establish an additional link between the governing parameters of the problem and the solution 
parameters, i.e., in the problem considered, condition (2.8) is satisfied at each kth step owing to the 
determination of the coefficient Rk+l of the Re expansion. 

As an example, we find the subsequent term wl((,r/) of expansion (2.1). The desired function C1(~ r 
in the representation (2.5) is defined from the solvability condition (2.4) of a boundary-value problem for 
determination of w3((, rl), the right-hand parts of which contain the terms w0(~, r/), wl ((, rl), and w2((, r/). The 
latter term is of the form of (2.5), where 

a2( , 7) = + + 

5c~176176 5 lr/4 (3 5c~ 9 - -  ( 59c~ it/, 
O21(T])-- 10752 896 768 ' 7 - 4  + 2+  384 ] - ~ r / 2 +  1 

i [ 34-3~r 32-37r / 3 2+37r ] 
v22( r ] )  = (r]2+l) arctan,7+ ( r ] 2 + 1 ) 2  - -  3r]6A 8 ~S--6r]4+ ~ --37?2-- 8 7] �9 

We write the right-hand side of Eq. (2.8) for Ca(() as 

8 as) + We)c0( ) Fx(() = (an(a, We) + g C~(~). 

The orthogonality condition (2.8) for FI(~) is satisfied if we set 

R2(a, We) = 535 cotan ~ --? _ 1512We . 2 5  (2.10) 25,08----8 6,05 ,048 c~ 

The function C1(() is then found according to formula (2.9). As FI(~) is the odd function, the function Ca(() 
will be odd as well. 

3. Invar iant  P r o p e r t y  of Or thogona l i ty  Condit ions.  In finding each subsequent expansion term 
in formula (2.9), an additional free parameter uk appears, which is responsible, as noted above, for translation 
of the coordinate system. Now it is important to understand how the parameters u l , . . . , v , - 2  enter the 
orthogonality conditions (2.8) for Fn-I(Co, CI, . . . ,Cn-2)  and how they affect the determination of the 
coefficient Rn. 

T h e o r e m .  The coefficients Rn found from the orthogonality conditions (2.8) for 
F,-I(C0, C1, . . . , C,-2) are not dependent on the parameter vl,. . . , v,-2. 

Proof.  This is performed by induction with respect to n. Let us select the dependence of the functions 
Ck on the parameters uj. We obtain by successive calculations that 

C0(r - Uo(~), C,(r v,) = U,(r +/21U;(~), (3.1) 
I"/2 II ! 

62(~; /21, /22) : U2(~) -t- b'lU~ (~) --~ -~-V; (~) -~-//2Uo(~). 

Here Uk(~) -- KFk(Uo,. . . ,  Uk-l) are functions that are not dependent on the parameters uj. To write the 
general term, it is convenient to consider Ck((; Vl,...,/2k) as generating functions in variables/21,--., vk (see 
[10]). We introduce the operators 0i of the variables vj by the formula 

O,( f I  ~:') : ~ '  f~ 4 / ( '  + ~ ' ,) .  
j=l j=l j=l 
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For Ck(~; u l , . . . ,  uk), the following recurrent expression, which is also determined by induction, 

k-I 
Ck(~; 111,.. Ilk) Uk(~) -1- ~ t ", �9 , = ~tCk_l,~(~; ul , . .  ~'k-t) + vkC'o(~) (3.2) 

l=l 
is then true. 

Formulas (3.1) are the basis for induction. We assume that ,  for k = 0 , . . . ,  n, the functions C~(~), which 
are defined as the solutions of Eqs. (2.7), have the representations (3.2). If one substi tutes these representations 
into the general formula for operator Fn+l(Co,.. . ,  Cn), after some manipulations,  with allowance for Eqs. 
(2.7) for Ck(~; ~1,-- . ,  uk) (k = 1 , . . . ,  n) and their differential consequences, we obtain 

n 

F,,+I(C0, �9 �9 �9 Cn) = Fn+l(Uo,...,  On) + L ~_, r  (3.3) 
/=0 

where L is the linear operator on the left-hand side of Eq. (2.7). Since the operator L is self-conjugate and 
C~(~) is the element of its kernel, it follows from (3.3) that  

+cr +oo 

f F ,+I (Co , . . . ,C , )C; ( [ )d[=  f Fn+,(Uo,. . . ,Un)C;(()d[.  

The integral on the right-hand side is not dependent  on the parameters uj. If one substi tutes the relation (3.3) 
into formula (2.9), and takes into account that  operators K and L are mutually inverse, one obtains that  the 
solution C,+ l ( [ ;  u l , . . . ,  u~+l) of Eq. (2.7) also has the structure (3.2). The theorem is proved. 

It is convenient to choose the coordinate system with the requirement for passing the y axis through a 
maximum elevation of the free boundary. To this requirement corresponds the condition wz(O, O) = O, which 
is equivalent to the conditions C~(0) = 0 satisfied for vk = 0 (k = 1 ,2 , . . . ) .  One can prove by induction that,  
in this case, each te rm wk([, r/) has a definite evenness in [, which coincides with the evenness of its ordinal 
number k. It has been revealed that  the coefficients Rk ,which  were found from the orthogonali ty conditions 
(2.8), are equal to zero for odd k. Thus, the Re expansion occurs only in even powers of r 

4. C o n c l u s i o n s .  In original variables, the asymptotic solution obtained takes the form 

r  = qJ(~(x ,y ) )  = qJ(y) "4- r y) -I- r y) "4- O(~4), 

h(z) = y(x, r/)] = -e2Co(r - e3C,(ez) + 
i 

o(e4).  
1 7=0 

The zero expansion coefficients are found in full accordance with the results of the approximate theory of film 
flows [2-6] for similar solutions of the governing parameters.  

The relations Re = (5 /6)cotana  + e2R2(a, We) + O(e4), where the coefficient R2(~,We) is negative 
at all values of the slope angle and Weber numbers [see formula (2.10)], shows that ,  for small e, the branch 
of the solutions is directed toward the subcritical domain for plane-parallel flow. This means that ,  for the 
constructed family, a "continuous" transition to a wave flow regime in the form of a gradual loss of stability 
of the basic flow is not possible in principle. 

This work was performed within the framework of Project  No. 43 of the Siberian Division of the 
Russian Academy of Sciences "Investigation of Surface and Internal Gravity Waves in a Fluid." 
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